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Abstract
Humans produce endogenous cannabinoids (endocannabinoids), a group of molecules that activate the same receptors as tet-
rahydrocannabinol. Endocannabinoids play important roles in reproduction in multiple species, but data in human endometrium
are limited. Because endocannabinoids such as anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) often act within tissues as
paracrine factors, their effects can be modulated by changes in expression of locally produced synthetic and degradative/oxidative
enzymes. The objective of this study was to localize and quantify expression of these key synthetic and degradative/oxidative
enzymes for AEA and 2-AG in human endometrium throughout the menstrual cycle. Key synthetic enzymes include
N-arachidonyl-phosphatidylethanolamine phospholipase-D (NAPE-PLD), diacylglycerol-lipase a (DAGL-a, and DAGL-b. Key
degradative enzymes include fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL); cyclooxygenase 2 (COX2)
is an oxidative enzyme. Endometrial samples were collected in 49 regularly cycling, normal women. Protein localization and
expression were achieved by immunohistochemistry and messenger RNA (mRNA) expression by real-time reverse transcriptase
polymerase chain reaction. No significant cycle-dependent mRNA expression was observed except that of COX2 (P ¼ .002),
which demonstrated maximum expression in the proliferative phase. During the secretory phase, NAPE-PLD protein had
increased expression in luminal (P ¼ .001), stromal (P ¼ .007), and glandular (P ¼ .04) epithelia, while FAAH had increased gland-
ular (P¼ .009) and luminal (P¼ .01) expression. Increased expression in glandular epithelia was identified for MAGL (P¼ .03). The
COX2 had increased luminal expression during the early secretory phase (P < .0001). In conclusion, maximal expression of degra-
datory/oxidative enzymes in the secretory phase may foster decreased endocannabinoid tone during implantation.
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Introduction

Cannabinoids are a class of over 60 compounds derived from

the plant Cannabis sativa as well as the synthetic or endogen-

ous versions of these compounds.1 The first cannabinoid to be

intensively studied was trans-D9-tetrahydrocannabinol (D9-

THC).2 In humans, D9-THC exposure has been associated with

luteinizing hormone (LH) suppression, anovulation,3 and preg-

nancy complications including preterm labor and intrauterine

growth restriction. However, these associations have unclear

mechanistic explanations, and no clear association with early

pregnancy loss has been found.4-6

Humans and many other animals also produce endogenous

cannabinoids (endocannabinoids). A role for cannabinoids in

human reproduction is suggested by studies on women using

marijuana, murine reproductive studies, and correlation

between lymphocyte endocannabinoid regulation and repro-

ductive status. However, there has been no direct evidence of

endocannabinoid action in the process of human embryo

implantation or human endometrial function.

The best characterized endocannabinoids are the unsatu-

rated fatty acid derivatives, N-arachidonoylethanolamide (ana-

ndamide [AEA]) and 2-arachidonoyl glycerol (2-AG). Both

AEA and 2-AG are synthesized by various tissues in many spe-

cies. The local and steady state levels of AEA and 2-AG are

tightly regulated by the local synthetic and degradative/oxida-

tive enzymes described in Figure 1.7-10 Endocannabinoid sys-

tems have been implicated in a variety of physiological and

pathological processes.11 Subsequent studies in the murine
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female reproductive tract have suggested roles in decidualiza-

tion, embryo development, and implantation.12

Endocannabinoid signaling plays a critical role in murine

embryonic implantation.13 In the mouse, AEA, 2-AG, and their

regulatory enzymes are produced in endometrium, and their

levels fluctuate significantly over the estrus cycle.14 The cyclic

changes in regulatory enzymes create spatiotemporal gradients

of AEA and 2-AG concentrations in mouse endometrium, with

low levels seen at implantation sites and high levels seen at

interimplantation sites during nonreceptive endometrial

phases.14 Furthermore, mouse blastocysts secrete a product that

induces uterine expression of fatty acid amide hydrolase

(FAAH), a degradative enzyme of AEA.15 Additionally, mouse

embryos express cannabinoid receptors, and ligation of those

receptors with high doses of AEA causes dose-dependent arrest

of embryo development and inhibition of blastocyst hatching.16

On the other hand, mouse embryos with cannabinoid receptor

deficiencies demonstrate delayed development, resulting in

dysynchrony with timing of uterine receptivity.17 Taken

together, the data strongly suggest that cannabinoid signaling

regulates implantation between the embryo and the endome-

trium in the mouse.

Several studies have found correlations between human

lymphocyte and plasma FAAH and AEA concentrations and

pregnancy outcomes.18-21 Collectively, these data strongly sug-

gest that endocannabinoid signaling may be a regulator of

human embryo implantation and early pregnancy maintenance

in humans.

Although significant data exist demonstrating the impor-

tance of endocannabinoid signaling in mouse reproduction and

human peripheral plasma, data related to FAAH and

monoacylglycerol lipase (MAGL) expression in human endo-

metrium are scant. One prior study, using immunohistochem-

ical technique, described the expression and localization of

N-arachidonyl-phosphatidyl ethanolamine phospholipase D

(NAPE-PLD) and FAAH, the regulatory enzymes for AEA,

in endometrial biopsies of women who were under investiga-

tion for benign conditions, such as menorrhagia, leiomyomata,

adnexal mass, pelvic pain, and cervical intraepithelial neopla-

sia.22 The NAPE-PLD, the synthetic enzyme, has increased

expression in endometrial glands during the menstrual, early

proliferative, and late secretory (LSE) phases of the menstrual

cycle. The FAAH, a degrative enzyme, has a relatively low

immunoreactivity in glands throughout the cycle, but it is

increased during the LSE phase. However, these data were lim-

ited by use of tissues from women undergoing surgery for var-

ious gynecologic disorders that might affect the expression of

the endocannabinoid system components.22

The purpose of our study was to assess the location and

amount of expression of synthetic and degradative/oxidative

enzymes for both AEA and 2-AG, more specifically, NAPE-

PLD, FAAH, cyclooxygenase 2 (COX2), MAGL, and

diacylglycerol-lipase (DAGL) a and b, in human endometrium

through the menstrual cycle in volunteer women without any

gynecological disorders.

Materials and Methods

This study was approved by the institutional review board of

University of North Carolina at Chapel Hill. Timed endome-

trial biopsies were performed across the menstrual cycle in

49 regularly cycling volunteers without known reproductive

abnormality. Biopsies were performed under sterile conditions

using Pipelle cannulas. Samples were dated by cycle day (pro-

liferative phase—Prolif) or days after urinary LH surge detec-

tion (secretory phase; early secretory [ESE]—LH þ 1 to LH þ
6; mid-secretory [MSE]—LH þ 7 to LH þ 10; and LSE—LH

þ 11 to LH þ 14). Samples were snap frozen in liquid nitrogen

for later RNA isolation (Prolif, n ¼ 11; ESE, n ¼ 5; MSE, n ¼
6; and LSE, n ¼ 4) or fixed in formalin for immunohistochem-

istry analysis (Prolif, n¼ 6; ESE, n¼ 6; MSE, n¼ 7; and LSE,

n ¼ 4).

RNA Isolation and Quantification

Total endometrial RNA was extracted from tissue samples

using the Ambion RNAqueous-4PCR kit (Applied Biosystems,

Ann Arbor, Michigan) according to manufacturer’s instruc-

tions and stored at �80�C. RNA was quantitated using Ribo-

Green (Molecular Probes, Carlsbad, California) with a

ribosomal RNA standard curve. First strand complimentary

DNA was synthesized from 500 ng of total RNA with Avian

Myeloblastosis Virus reverse transcriptase using manufactur-

er’s instructions (Roche, Indianapolis, Indiana). An equivalent

volume of water was substituted for RNA for each reaction as a

‘‘no template’’ negative control. The total reaction volume was

Figure 1. A simplified representation of endocannabinoid synthesis and
degradation pathway. NAT indicates arylamine N-acetyltransferase;
NAPE-PLD, N-arachidonyl-phosphatidylethanolamine phospholipase-
D; FAAH, fatty acid amide hydrolase; COX, cyclooxygenase; MAGL,
monoacylglycerol lipase; 2-AG, 2-arachidonoyl glycerol; DAGL,
diacylglycerol-lipase; AA, arachidonic acid.
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20 mL, and reverse transcription conditions were 25�C for 10

minutes, 42�C for 60 minutes, and 99�C for 5 minutes.

Complimentary DNA samples were then diluted 1:5 and

plated in triplicate with TaqMan Master Mix (Applied Biosys-

tems, Foster City, California) and sterile water. Predesigned

TaqMan probe and primer sets (Applied Biosystems) for

NAPE-PLD (Hs00419593_m1), FAAH (Hs01038660), MAGL

(Hs00200752_m1), cyclooxygenase-2 (COX2; Hs00153133_m1),

–DAGL-a (Hs00391374_m1), and DAGL-b (Hs00373700_m1)

genes were used to perform reverse transcriptase polymerase chain

reaction (RT-PCR), with their expression normalized to peptidyl-

prolyl cis-trans isomerase A (PPIA; Hs04194521_s1), a constitu-

tive control. The PPIA was chosen as housekeeping gene based

on previous work where 12 housekeeping genes were validated

in the endometrium. The Normfinder average expression stability

value23 for PPIA in endometrium was 0.31. The PPIA was the

best normalization gene among a set of candidates for human

endometrial samples.24 The total reaction volume for all RT-

PCR experiments was 20 mL, and reactions were performed

in 96-well plates on a Stratagene MX3000 thermocycler (Agilent

Technologies) for 40 two-step cycles (95�C for 25 seconds

and then 60�C for 1 minute). All experiments were conducted

in triplicate.

Immunohistochemistry

Protein immunolocalization was performed for NAPE-PLD,

FAAH, MAGL, and COX2 with commercially available anti-

bodies (all from Cayman Chemical, Ann Arbor, Michigan),

and specificity was determined with the respective blocking pep-

tides (Cayman Chemical) as shown in Table 1. Endometrial

samples were deparaffinized in xylene, rehydrated in decreasing

concentrations of ethanol, and rinsed in phosphate-buffered saline

(PBS). Samples were incubated with 0.3% H2O2 in methanol for

30 minutes to block endogenous peroxidase activity and then with

0.1 mol/L citrate buffer (pH 6.0) at 100�C for 15 minutes for anti-

gen retrieval. Slides were washed in water and incubated with

10% goat serum in PBS for 1 hour at room temperature to block

nonspecific binding. Tissue sections were then incubated over-

night in a humid chamber at 4�C with rabbit polyclonal antibodies

diluted by blocking solution (anti-NAPE-PLD, 1:80; anti-FAAH,

1:400; anti-MAGL, 1:40; and anti-COX2, 1:250). After a PBS

rinse and immersion in blocking solution for 10 minutes, the

slides were incubated with biotintylated goat anti-rabbit

immunoglobulin G (Cayman Chemical) at 1:250 dilution for

1 hour and then with avidin-biotinylated horseradish peroxi-

dase complex (Vector Laboratories, Burlingame, California)

for 1 hour. Additional samples incubated without primary antibody

were used as controls. Slides were placed in a diaminobenzidine

solution for 10 minutes, incubated in 2% osmium at room tem-

perature for 10 minutes, rinsed in PBS, then counterstained

with toluidine blue, and dehydrated using increasing ethanol

concentrations. Protein staining intensity and distribution were

assessed using HSCORE.25 Briefly, the whole sample (all micro-

scopic fields) was analyzed under a 200 and 400�magnification

and the following formula was used: HSCORE ¼ S Pi (I þ 1),

where i¼ intensity of staining (values are 1, 2, or 3; weak, mod-

erate or strong, respectively) and Pi is the percentage of stained

cells. Human testis was used as external positive and negative

control. Our group has recently documented the high correla-

tion (r [s] .86-.79 to .9; P < .0001) of HSCORE and image anal-

ysis software results.26

Statistical Analysis

Data were grouped into 4 menstrual cycle phases for analysis:

Prolif, ESE, MSE, and LSE. They were also grouped by endo-

metrial compartment: lumen, glands, and stroma. Statistical

analysis of the messenger RNA (mRNA) expressions of the dif-

ferent genes and proteins was performed using 1-way analysis

of variance (ANOVA) tests (with Tukey post hoc test) if data

were normally distributed (D’Agostino & Pearson omnibus

normality test); otherwise, data were normalized using a loga-

rithmic formula. Immunohistochemical expression was analyzed

with 2-way ANOVA, considering the different compartments

(luminal, glandular, and stroma) and different phases of the

menstrual cycle. Fisher least significant difference was used

as a post hoc test. Significance was set at P < .05. Analyses

were performed using Prism 6.0 (GraphPad, San Diego,

California).

Results

Endocannabinoid Synthetic Enzymes (NAPE-PLD,
DAGL-a, and DAGL-b)

Coding mRNA for all 3 synthetic enzymes, NAPE-PLD,

DAGL-a, and DAGL-b, was detected throughout the menstrual

cycle (Figures 2 and 3), and no significant difference was found

among their mRNA levels.

The NAPE-PLD protein was immunolocalized to luminal,

glandular, and stroma cells, with higher intensity seen during

the secretory phase (Figure 2B). A significant cyclic variability

in the luminal (P ¼ .001), stroma (P ¼ .007), and glands

(P ¼ 0.04) was seen during the MSE and LSE phases.

Table 1. Antibodies Used in the Study.

Antibody Manufacturer Dilution

FAAH—fatty acid amide hydrolase—polyclonal antibody rabbit anti-human Cayman Chemical N#101600 1:400
MAGL—polyclonal antibody rabbit anti-human Cayman Chemical N#100035 1:40
COX2—polyclonal antibody rabbit anti-human Cayman Chemical N#160126 1:250
NAPE-PLD—polyclonal antibody rabbit anti-human Cayman Chemical N#10305 1:80
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Figure 2. Expression of N-arachidonyl-phosphatidylethanolamine phospholipase-D (NAPE-PLD) across different phases of the menstrual cycle,
using (A) reverse transcriptase polymerase chain reaction (RT-PCR; proliferative, n ¼ 11; early secretory, n ¼ 5; mid-secretory, n ¼ 6; and late
secretory, n ¼ 4). One-way analysis of variance (ANOVA) was used for analysis. B, HSCORE at different compartment of the endometrium;
analysis was done with 2-way ANOVA, with Fisher least significant difference as post hoc test. Variables were phase of the cycle and compart-
ment of the endometrium. Values in graph are mean + standard error of the mean (SEM; proliferative, n ¼ 6; early secretory, n ¼ 6; mid-
secretory, n¼ 7; and late secretory, n¼ 4). C, Representative pictures of each phase of the menstrual cycle and its immunolocalization. Human
testis was used as positive and negative control. Bars represent 50 mm.

116 Reproductive Sciences 22(1)

116



Endocannabinoid Degradatives/Oxidative Enzymes
(FAAH, MAGL, and COX2)

Messenger RNA encoding the degradative (FAAH and MAGL)

and oxidative (COX2) enzymes of endocannabinoids was

detected throughout the menstrual cycle (Figures 4–6). Among

these enzymes, only mRNA expression of COX2 exhibited a

significant difference over the menstrual cycle. Low and max-

imal mRNA expression was seen in the LSE and Prolif phases,

respectively (Figure 5A; P ¼ .002). There was a significant

increase in COX2 protein expression in luminal endometrium

during the ESE (Figure 5B and C).

The FAAH protein was detected in endometrial lumen,

glands, and stroma. Immunostaining of FAAH was signifi-

cantly higher in endometrial glands and luminal epithelium

in the MSE phase (Figure 4B and C).

Monoacylglycerol lipase protein did not stain strongly in

any cycle phase, except for the ESE phase, where a significant

difference was found in the glands (Figure 6B and C).

Discussion

In this study, we analyzed mRNA coding for 5 regulatory

enzymes to be expressed throughout the menstrual cycle. Only

COX-2 mRNA varied consistently with cycle phase, with an

increase in the ESE endometrium (Figure 5). Data on human

endometrial COX2 mRNA expression over different cycle

phases are novel. Porcine endometrial COX2 mRNA expres-

sion is increased on days 10 to 12 of the estrous cycle, that

is, before ovulation.27 The mean levels of other genes did not

differ across the menstrual cycle (Figures 2, 3, 4, and 6, Simi-

larly, Gebeh et al did not find a difference in NAPE-PLD

mRNA expression between follicular and secretory phases of

endometrium obtained from normal women.28 The patterns

of protein expression of FAAH, MAGL, COX2, and NAPE-

PLD did not correlate with the mRNA levels. Possible explana-

tions for these findings could be related to the fact that the

mRNA levels were obtained from whole endometrial biopsy,

while immunohistochemical analysis was performed in differ-

ent compartments of the histological samples. Nevertheless,

some correlation between mean mRNA levels and immunohis-

tochemical expression can be observed in MAGL (Figure 6).

Of note, recent data have demonstrated that there is substantial

posttranscriptional regulation of protein abundance; only 40%
of the protein concentration can be explained by abundance

of mRNA.29

Maximal protein expression was seen in the secretory phase

for all characterized enzymes (Figures 2 and 4-6). The NAPE-

PLD protein expression in endometrium was significantly

higher in the MSE and LSE phases (Figure 2). These results are

different from Taylor et al. Taylor et al reported NAPE-PLD

protein expression to be high in the Prolif phase, reaches a nadir

at the ESE phase, and returns to increase gradually at MSE and

LSE phases.22 In our study, NAPE-PLD is higher in MSE and

LSE phases, compared to the Prolif phase. The major discre-

pancy is the expression in the Prolif phase. Possible explana-

tions for these differences may be related to the selection of

patients. We performed endometrial biopsy in normal, proven

fertile volunteers without any reproductive abnormality, while

Taylor et al obtained their samples from patients who under-

went endometrial biopsies to investigate menorrhagia, leio-

myoma, or pelvic pain. These conditions are often associated

with abnormal levels of prostaglandins30-32 and infertility.33,34

Similarly, a major difference was found in FAAH protein

expression in glandular compartment. Taylor et al found that

FAAH has a nadir in MSE endometrium22; FAAH, in our

study, reaches its highest expression in the MSE phase (Figure 4).

Nevertheless, our findings on FAAH protein expression in the

endometrium mirror those found by Maccarrone et al who

measured lymphocyte levels of FAAH and AEA.19 Indeed,

high levels of FAAH are found at the site of murine embryo

implantation. These high levels are thought to be beneficial

to implantation because AEA levels are reduced.35 Another

possibility could be related to the differences in antibodies

and to the methodology for image analysis.36 These differ-

ences warrant further investigation.

Monoacylglycerol lipase is the principal enzyme involved

in the degradation of endogenous 2-AG. The degradative

(MAGL) and synthetic enzymes (DAGL-a and b) for 2-AG

have not been studied in all phases of the menstrual cycle in

endometrium of women of reproductive age. We found MAGL

protein expression to be increased in luminal endometrium dur-

ing the ESE phase, similar to what has been found in the murine

Figure 3. Quantitative reverse transcriptase polymerase chain reac-
tion (RT-PCR) evaluation of endometrial messenger RNA expression
for diacylglycerol-lipase (DAGL) a (A) and DAGL b (B) enzymes
involved in endocannabinoid metabolism across the menstrual cycle
(proliferative, n¼ 11; early secretory, n¼ 5; mid-secretory, n¼ 6; and
late secretory, n ¼ 4). One-way analysis of variance (ANOVA).
Graphs represent mean + standard error of the mean (SEM). All
groups passed the normality test distribution.
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model.14 These findings suggest that 2-AG is degraded by

MAGL in humans as in the murine model.14 On the other hand,

we did not find DAGL-a mRNA expression to be upregulated

during the window of implantation as has been shown in the

mouse.14 Normal implantation occurs when low levels of

2-AG and AEA occur on the implantation site.14 Our findings

Figure 4. Expression of fatty acid amide hydrolase (FAAH) across the different phases of the menstrual cycle, using (A) reverse transcriptase
polymerase chain reaction (RT-PCR; proliferative, n ¼ 11; early secretory, n ¼ 5; mid-secretory, n ¼ 6; and late secretory, n ¼ 4). One-way
analysis of variance (ANOVA) was used for analysis. B, HSCORE at different compartment of the endometrium; analysis was done with 2-way
ANOVA, with Fisher least significant difference as post hoc test. Variables were phase of the cycle and compartment of the endometrium. Values
in graph are mean + standard error of the mean (SEM; proliferative, n ¼ 6; early secretory, n ¼ 6; mid-secretory, n ¼ 7; and late secretory,
n ¼ 4). All samples passed normality distribution. C, Representative pictures of each phase of the menstrual cycle and its immunolocalization.
Human testis was used as positive and negative control. Bars represent 50 mm.
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Figure 5. Expression of cyclooxygenase 2 (COX2) across the different phases of the menstrual cycle, using (A) reverse transcriptase polymer-
ase chain reaction (RT-PCR; proliferative, n ¼ 11; early secretory, n ¼ 5; mid-secretory, n ¼ 6; and late secretory, n ¼ 4). Values were not
normally distributed and therefore underwent logarithmic transformation to allow parametric analysis. One-way analysis of variance (ANOVA)
was used for analysis, with Tukey as post hoc test, (a) P¼ 0.02; (b) P¼ 0.04. B, HSCORE at different compartment of the endometrium; analysis
was done with 2-way ANOVA, with Fisher least significant difference as post hoc test. Variables were phase of the cycle and compartment of the
endometrium. Values in graph are mean + standard error of the mean (SEM; proliferative, n ¼ 6; early secretory, n ¼ 6; mid-secretory, n ¼ 7;
and late secretory, n ¼ 4). All samples passed normality distribution. C, Representative pictures of each phase of the menstrual cycle and its
immunolocalization. Human testis was used as positive and negative control. Bars represent 50 mm.
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Figure 6. Expression of monoacylglycerol lipase (MAGL) across the different phases of the menstrual cycle, using (A) reverse transcriptase
polymerase chain reaction (RT-PCR; proliferative, n ¼ 11; early secretory, n ¼ 5; mid-secretory, n ¼ 6; and late secretory, n ¼ 4). One-
way analysis of variance (ANOVA) was used for analysis. B, HSCORE at different compartment of the endometrium; analysis was done with
2-way ANOVA, with Fisher least significant difference as post hoc test. Variables were phase of the cycle and compartment of the endometrium.
Values in graph are mean + standard error of the mean (SEM). (proliferative, n ¼ 6; early secretory, n ¼ 6; mid-secretory, n ¼ 7; and late
secretory, n ¼ 4). All samples passed normality distribution. C, Representative pictures of each phase of the menstrual cycle and its immuno-
localization. Human testis was used as positive and negative control. Bars represent 50 mm.
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on different levels of MAGL on the luminal site corroborate

with those findings in the murine model. The differences in

tissue analysis and compartments may explain the differences

we found between MAGL mRNA levels and protein levels.

Although not significant, the mean levels of MAGL mRNA

correspond to those found in the glandular epithelium (Figure 6).

The DAGL is an important player in 2-AG formation. The low

mean levels of DAGL-a mRNA in MSE endometrium, although

not significant, need further investigation in order to generate

data about the balance of 2-AG levels during the implantation

period (Figure 3).

Cyclooxygenase 2, which oxidizes both AEA and 2-AG,

was found to have an increase in mRNA levels during the Prolif

phase, followed by a reduction in ESE and LSE (Figure 5). Of

note, protein expression did not correlate with the mRNA levels.

The increased expression of COX2 in luminal epithelium as

compared to stroma is similar to that found by other authors using

immunohistochemistry to analyze human endometrium.37,38

Likewise, the low expression of COX2 in glandular epithelium

is similar to those published by Jones et al.39 However,

Stavreus-Evers et al did not find COX2 protein expression to vary

during the luteal phase as we found.40 This is likely related to the

staining score system; we used a parametric method, while

Stavreus-Evers et al used a nonparametric method. Overall, these

findings indicate that the role of COX2 in endocannabinoid reg-

ulation may be particularly important to understand in human

reproduction. Further, the use of nonsteroidal anti-inflammatory

medications (NSAIDs) is common and has been associated with

ovulatory dysfunction in humans (eg, preventing follicle rup-

ture),41 rats,42 and mice (eg, inhibition of ovulation, fertilization,

decidualization, and implantation).43 Although the mechanism

of COX2 inhibition by NSAIDs in reproductive dysfunction

may be due to reduced prostaglandin production, another pos-

sibility is elevated endometrial levels of AEA and 2-AG. This

mechanism may favor the debate on the risk of miscarriage in

users of NSAIDs as advocated by many authors.44-47

The selection of normal healthy cycling women is the major

strength of this study. By sampling normal volunteer women,

we removed the bias that could be associated with benign gyne-

cological conditions, such as pelvic pain, leiomyoma, and

abnormal uterine bleeding. Unfortunately, we did not measure

local levels of AEA, the immunoexpression of DAGL-a and b,

CB1, CB2, TRPV1, and the lipoxygenase isoenzymes in our

sample to complement our findings.

Human research investigating the role of endocannabinoid

signaling in reproduction has largely concentrated on studies

of peripheral blood and circulating lymphocytes. For example,

plasma AEA levels fluctuate during the menstrual cycle, with

peak levels in the ovulatory phase and a nadir in the LSE

phase.48 Also, low lymphocyte FAAH expression and high

plasma AEA levels have been associated with lower odds of

successful pregnancy after in vitro fertilization20 and increased

risk of miscarriage.49

Overall, our findings as well as those previously done

using human peripheral blood samples reflect increased endo-

cannabinoid hydrolysis during the MSE phase, supporting the

hypothesized role of endocannabinoid regulation in embryo

implantation. In conclusion, we have presented the descrip-

tion of protein and mRNA levels for some of the major synthetic

and degradative/oxidative enzymes regulating endocannabinoid

(AEA and 2-AG) levels in human endometrium across the

menstrual cycle. Our findings establish a foundation for fur-

ther investigation of other endocannabinoid signaling recep-

tors in human embryo implantation.
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